# Design and Analysis of Computer Algorithms

**Author:**David Mount

**Content URL:**Link To Content

###
About *Design and Analysis of Computer Algorithms:*

Course web page: http://www.cs.umd.edu/~mount/451/

Excerpt from book:

Programming is a very complex task, and there are a number of aspects of programming that make it so complex. The first is that most programming projects are very large, requiring the coordinated efforts of many people. (This is the topic a course like software engineering.) The next is that many programming projects involve storing and accessing large quantities of data efficiently. (This is the topic of courses on data structures and databases.) The last is that many programming projects involve solving complex computational problems, for which simplistic or naive solutions may not be efficient enough. The complex problems may involve numerical data (the subject of courses on numerical analysis), but often they involve discrete data. This is where the topic of algorithm design and analysis is important.

Although the algorithms discussed in this course will often represent only a tiny fraction of the code that is generated in a large software system, this small fraction may be very important for the success of the overall project. An unfortunately common approach to this problem is to first design an inefficient algorithm and data structure to solve the problem, and then take this poor design and attempt to fine-tune its performance. The problem is that if the underlying design is bad, then often no amount of fine-tuning is going to make a substantial difference.

The focus of this course is on how to design good algorithms, and how to analyze their efficiency. This is among the most basic aspects of good programming.

Excerpt from book:

Programming is a very complex task, and there are a number of aspects of programming that make it so complex. The first is that most programming projects are very large, requiring the coordinated efforts of many people. (This is the topic a course like software engineering.) The next is that many programming projects involve storing and accessing large quantities of data efficiently. (This is the topic of courses on data structures and databases.) The last is that many programming projects involve solving complex computational problems, for which simplistic or naive solutions may not be efficient enough. The complex problems may involve numerical data (the subject of courses on numerical analysis), but often they involve discrete data. This is where the topic of algorithm design and analysis is important.

Although the algorithms discussed in this course will often represent only a tiny fraction of the code that is generated in a large software system, this small fraction may be very important for the success of the overall project. An unfortunately common approach to this problem is to first design an inefficient algorithm and data structure to solve the problem, and then take this poor design and attempt to fine-tune its performance. The problem is that if the underlying design is bad, then often no amount of fine-tuning is going to make a substantial difference.

The focus of this course is on how to design good algorithms, and how to analyze their efficiency. This is among the most basic aspects of good programming.